Zwitterionic Surfactant Stabilized Palladium Nanoparticles as Catalysts in Aromatic Nitro Compound Reductions
نویسندگان
چکیده
Palladium nanoparticles (NPs) stabilized by ImS3-14, a zwitterionic surfactant structurally related to ionic liquids, are revealed here to be good catalysts for the reduction of a large number of substituted aromatic nitro compounds. Our mass spectrometry results are consistent with the formation of amino products in a direct route, where the aromatic nitro compounds are initially reduced to nitroso compounds, which are then reduced to the hydroxylamine derivatives and finally to the anilines. Activation parameters showed that for most Pd catalysts reported in the literature, the mechanism seems to be similar, with lower enthalpy of activation (ΔH) being compensated by more negative entropy of activation (ΔS). As a result, the reaction is thermally compensated and the rate constants for most reactions rather similar. Furthermore, Pd NPs stabilized by ImS314 showed efficient catalytic activities for the reduction of aromatic nitro compounds, with high conversion and good selectivity even using very low loadings of metal.
منابع مشابه
Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity.
A concise synthesis of Pd nanoparticles encapsulated in a sponge-like carbonaceous support (Pd/C) was achieved by mixing a solution containing water, ethylene glycol and Pd(II) with diphosphorus pentoxide, leading to excellent catalytic performance of Pd/C towards the reduction of the model aromatic nitro compound.
متن کاملDidocosyl selenide stabilized recyclable Pd(0) nanoparticles and coordinated palladium(II) as efficient catalysts for Suzuki-Miyaura coupling.
First selenium ligand stabilized Pd(0) nanoparticles (∼3-5 nm) catalyze Suzuki-Miyaura C-C coupling in short time and are recyclable (up to 94% yield after 5 reuses). The air stable compound [PdCl(2)(L1)(2)] shows high catalytic efficiency for this coupling as its 3 × 10(-5) mol% is sufficient for activated ArBr.
متن کاملDesigning versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide.
Herein we report the covalent grafting of chitosan on graphene oxide (GO) followed by a simple approach for anchoring silver (AgNPs) and gold (AuNPs) nanoparticles onto a chitosan grafted graphene oxide surface by a NaBH4 reduction method. Catalytic activity of prepared heterogeneous GO grafted chitosan stabilized silver and gold nanocatalysts (GO-Chit-Ag/AuNPs) was explored for the reduction o...
متن کاملGraphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.
Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the...
متن کاملSynthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction
The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So, we report that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L) using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...
متن کامل